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This paper reports on a recent benchmark calculation in the four-nucleon system, aimed
at investigating the reliability of the no-core shell model (NCSM) approach to the descrip-
tion of inclusive response functions via the Lorentz integral transform (LIT) method.

1. Introduction

There is much interest in obtaining a more microscopic approach to nuclear reaction the-
ory. In the past decade a new approach, based on an integral transform with a Lorentzian
kernel [1], has opened a way to evaluate rigorously reaction observables, reducing the
continuum problem to a bound-state problem [2]. This technique, known as the Lorentz
integral transform (LIT) method, combined with an accurate bound-state technique such
as the effective-interaction hyper-spherical harmonics (EIHH) [3] has allowed the calcu-
lation of electromagnetic reaction cross sections beyond break-up thresholds of nuclei up
to A=T7 [4].

The EIHH and NCSM [5] approaches are rather similar bound-state techniques. How-
ever, only the latter has made use of realistic interactions in calculations with A > 4.
Indeed, the NCSM has the advantage that one can use an equivalent Slater determinant
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basis, allowing description of a larger range of masses. Therefore, it is of great interest to
investigate the possibility of combining the NCSM and LIT approaches.

In this regard, we have recently performed a benchmark test in the four-nucleon sys-
tem [6], consisting of a calculation of the *He response functions for two different excitation
operators within both the EIHH and the NCSM techniques. The input interaction for
these test calculations is the semi-realistic Minnesota (MN) [8] potential.

After a brief overview of the LIT, NCSM and EIHH approaches, we present and discuss
some of the results obtained.

2. The LIT approach

In terms of the transition matrix elements to the various allowed final states, the inclu-
sive response of a system to a perturbation-induced reaction takes the form:

Rw) = [ s [(w] O1W0)[ 8(Ey — By —w), (1)

where w represents the energy transferred by the probe, and O the excitation operator.
Wave functions and energies of the ground and final states of the perturbed system are
denoted by ‘\Ifo / f> and FEy,y, respectively.

While in conventional approaches one usually starts from Eq. (1), in the LIT method [1]
one obtains R(w) after the inversion of its integral transform with a Lorentzian kernel

R(w)

oy = ). )

L(og,01) = /dw =

Indeed, in order to calculate such a transform it is sufficient to solve the inhomogeneous
“Schrodinger-like” equation

(H — Ey — o + i07)|¥) = O|¥,). (3)

Because of the presence of an imaginary part o; in Eq. (3) and the fact that the right-
hand side of this same equation is localized, one has an asymptotic boundary condition
similar to a bound state. Thus, one can apply bound-state techniques for its solution,
and, in particular, expansions over basis sets of localized functions. Morover, the solution
of Eq. (3) is unique. For inversion methods we refer the reader to Ref. [9].

3. NCSM versus ETHH

The NCSM and ETHH approaches are bound-state techniques based on an expansion
of the Schrodinger wave function in terms of a complete set of localized states. In both
techniques, one works in a finite subset of the Hilbert space, called the model space
(or P-space). In order to account for many-body correlations left out by the trunca-
tion of the Hilbert space, one then builds an effective interaction by means of a unitary
transformation [7] in the so-called cluster approximation [5]. The main differences be-
tween the NCSM and EIHH techniques originate from the choice of the localized A-body
basis states: the harmonic oscillator (HO) basis function in the NCSM case, and the
hyper-spherical-harmonics (HH) functions in the EIHH case. The latter choice results
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Figure 1. “He: dependence on the HO frequency € of (left panel) the NCSM LIT for
or = 20 MeV, and (right panel) inclusive response for the isoscalar quadrupole transition.
Note that N, = 16/16 is not a complete model space (see text for details). The solid
lines represent the EIHH results for K., = 10/12.

in a different asymptotics for the wave functions and a different definition for the model
space. In particular, in the NCSM the P-space is spanned by states with the total num-
ber of HO quanta N < N,,,. above the ground state configuration, whereas in the EIHH
approach the model space is defined by the HH functions with K < K,,,4,. In view of the
above mentioned differences, it is clear that the reliability of the NCSM approach for the
description of inclusive response functions via the LIT method, especially concerning the
problem of convergence, is not obvious a priori and a benchmark calculation is needed in
order to assess it.

4. Isoscalar quadrupole inclusive response

We present results for the isoscalar quadrupole transition operator. We start the dis-
cussion with the NCSM and EIHH results for the LIT (2). Two model spaces are involved
in this calculation: the J™, T = 07,0 P-space for the a-particle ground state |¥y) [en-
tering the source term of Eq. (3)] and the J™,T = 2+ 0 for the LIT state |¥). In our
largest model space NCSM calculations (Np.: = 16/16), we have omitted the contribu-
tions coming from the transitions to the J™T' = 2%, 0 with N,,.. = 18.2 In the left panel
of Fig. 1, the NCSM LIT’s in the largest model space for three different HO frequencies
(A2 = 12,19, and 28 MeV) are compared with the EIHH converged calculation. One
sees that the omitted transitions do not cause a loss of strength in the NCSM curves.
Indeed, frequency independent results in good agreement with the EIHH are obtained for
Nypaz = 16/16.

The right panel of Fig. 1 shows the NCSM and EIHH results for the inclusive response
to the isoscalar quadrupole excitation obtained by inverting the LIT’s presented in the
left panel. The HO frequency value of {2 = 12 MeV leads to the best agreement with the
EIHH response (within 5% in the energy interval from threshold to ~ 50 MeV), and the

2Note that Nyyax = N/N'(Kmar = K/K') means that the NCSM(EIHH) calculations were performed
for a model space of size Nyyaz = N(Kypar = K) for the 07,0 and Nyyar = N/ (Kpaw = K') for the 27,0
states, respectively.



discrepancy among the four curves never exceeds the 10% in the range 25 MeV < w <
60 MeV, where the response presents a resonant shape. Indeed, the numerical inversion
procedure [9] is very sensitive to the accuracy in the calculation of the LIT, especially
in the low-og region, where (for a fixed model space) smaller HO frequencies provide
a better sampling of the complex-energy continuum. More delicate is the region of the
high-energy tail, where the response is very small.

In conclusion, we find that the NSCM can be successfully applied to the solutions of
the bound-state equations required by the LIT method. However, although the level of
precision reached by the NCSM in this benchmarking calculation with a semi-realistic
interaction is encouraging, in the perspective of LIT investigations on heavier nuclei,
the large model spaces needed in the NCSM calculations in order to achieve the required
accuracy suggest that a more substantial numerical effort will be necessary. In this respect,
effective filed-theory two- and three-body potentials, which present a rather soft core,
may be convenient input interactions. Their application in the evaluation of the *He total
photo-disintegration via the NCSM and LIT approaches is currently under investigation.

Acknowledgments

S.Q., I.S. and B.R.B acknowledge partial support by NFS grants PHY0070858 and
PHY0244389. The work was performed in part under the auspices of the U. S. Department
of Energy by the University of California, Lawrence Livermore National Laboratory under
contract No. W-7405-Eng-48. P.N. received support from LDRD contract 04-ERD-058.
The work of N.B. was supported by the ISRAEL SCIENCE FOUNDATION (Grant No.
361/05). C.W.J. acknowledges USDOE grant No.DE-FG02-03ER41272. We thank the
Institute for Nuclear Theory at the University of Washington for its hospitality and the
Department of Energy for partial support during the development of this work. S.Q.
thanks the organizers of the 18th International [UPAP Conference on Few-Body Problems
in Physics (FB18) for partial local support.

REFERENCES

1. V. D. Efros, W. Leidemann, and G. Orlandini, Phys. Lett. B 338 (1994) 130.

2. V. D. Efros, Sov. J. Nucl. Phys. 41 (1985) 949; Phys. At. Nucl. 56 (1993) 869;
Phys. At. Nucl. 62 (1999) 1833.

3. N. Barnea, W. Leidemann, and G. Orlandini, Phys. Rev. C 61 (2000) 054001; Phys.
Rev. C 67 (2003) 054003.

4. S. Bacca, H. Arenhovel, N. Barnea, W. Leidemann, and G. Orlandini, Phys. Lett. B
603 (2004) 159.

5. Navrétil and B. R. Barrett, Phys. Rev. C 54 (1996) 2986; Phys. Rev. C 57 (1998) 562.

6. I.Stetcu, S. Quaglioni, S. Bacca, B. R. Barrett, C. W. Johnson, P. Navratil, N. Barnea,
W. Leidemann, and G. Orlandini, Preprint nucl-th/0605056.

7. J. Da Providencia and C. M. Shakin, Ann. of Phys. 30 (1964) 95; K. Suzuki and
S. Lee, Prog. Theor. Phys. 64 (1980) 2091; K. Suzuki, Prog. Theor. Phys. 68 (1982)
246; K. Suzuki and R. Okamoto, Prog. Theor. Phys. 70 (1983) 439.

8. D. R. Thomson, M. LeMere, and Y. C. Tang, Nucl. Phys. A 286 (1977) 53.

9. V.D. Efros, W. Leidemann, and G. Orlandini, Few-Body Syst. 26 (1999) 251; D. An-
dreasi, W. Leidemann, C. Reif, and M. Schwamb, Eur. Phys. J A24 (2005) 361.



